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We prove that there is a bounded linear operator T: 100 --->-/00 for which there
is no closest compact linear K : 100 --->-/00 • A similar result is proved for an operator
from /1 to L,(O, 1). This implies, in the cases where X = L1(O, 1), X = Loc,(O, 1) or
X = ceO, 1), that there is an operator T: X --->- X with no best compact approxi­
mation (see Appendix). We show that L 1fO, 1) contains a set S, bounded and
non-empty, for which infe supx<=s d(x, C) over all compact subsets C of L 1(0, 1)
is not attained. The set S is used to prove the above results.

1. INTRODUCTION

Several authors have considered the problem of determining the pairs
of Banach spaces E, F for which G(E, F) is proximinal in L(E, F). (See
Section 2 for definitions and notations.) In particular, CCE, E) is known to
be proximinal in L(E, E) when E = Ip , 1 ~ p < 00, or E = co' (See
[1,3-7,9, 11]. [1] contains a detailed historical survey.) However, we prove:

THEOREM 1. G(loo, 100 ) is not a proximinal subspace of L(loo , fa,}.

It seems that the above is the first example of a classical Banach space
E for which CCE, E) is not proximinal in L(E, E).

For a bounded set S in a Banach space E we consider the infimum

a(S) = inf sup d(x, G),
C ,"eS

(1.1)

where G ranges over all compact subsets of E. a(S) is called in [9] "the
Kuratowski measure of non-compactness" of S. It is easy to see that a(S)
is the infimum of the set of all r > 0 for which there is a finite r-net of S.
We prove:
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THEOREM 2. The space LI(O, 1) has a bounded subset S such that for every
compact subset C of LiO, 1) there is XES with d(x, C) > a(S). (That is,
the infimum (1.1) is not attained.)

Theorem 2 will be proved in Section 3 and will be used in Section 4 to
prove Theorem 1. We will also prove the following.

THEOREM 3. C(lI' LI(p.» is proximinal in LUI' LI(p) if and only if P­
is purely atomic.

2. DEFINITIONS, NOTATIONS, AND CONVENTIONS

An "operator" in this paper is always bounded and linear. When E and F
are Banach spaces, L(E, F) denotes the Banach space of all operators from
E to F, with the sup norm. C(E, F) is the subspace of L(E, F) of the compact
operators. When E and F are fixed, the essential norm (introduced in [1D
of T E L(E, F), II Tile' is defined by

II Tile = inf{11 T - K II: K E C(E, F)} = d(T, C(E, F».

Ii T lie depends on F-if F is a subspace of G and J: F ->- G is the inclusion,
il JT lie may be smaller than II Tile (cf. [la]). Bya "set" here we mean a non­
empty set. A set S in a metric space (X, d) is said to be proximinal if for every
x in X there is y in S so that d(x, y) = d(x, S), where d(x, S) = inf{d(x, z):
Z E S}. When A and B are sets in a vector space and ,\ is a scalar, A + B
is the set of all sums x + y, X E A, y E Band AA is the set of all ,\ multiples
of elements of A. Finally, for a Banach space E, BE denotes the closed unit
ball of E.

3. A SUBSET OF LI(O, 1)

In this section we prove Theorem 2. Let I: LI(O, 1) ->- LI(D, 1) be the identity
operator. For positive integers nand i we define the closed interval Llr) =

[(i - 1) 2-", i2-"]. For a set A, the characteristic function XA is defined by
xix) = I when x E A and XA(X) = °otherwise. The operators

defined by
n

Pi!) = t (2" f J(t) dt) XLJ!n)
i=l L1~Ti.}

are contractive projections and P n ->- I uniformly on every compact set.
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We now define a set S C L 1(0, 1) as follows: put B = BL1(O,I) , Cn = Pa(B)
and

(3.1)

The Lebesgue measure will be denoted by .\.

LEMMA 1. Let [a, b] = lr U 12 U ... U I2n be a decomposition of the
closed interval [a, b] into 2n subintervals so that .\I; = (2n)-I(b - a) for every
i (i.e., all Ii have same length). Let A be a measurable set such that

.\(A n Ii) = 8(2n)-I(b - a),

= (1 - 8)(2n)-I(b - a),

i = 1, 3, , 2n - 1,

i = 2, 4, , 2n,

for some i < 8 < 1. Then for every two constants ex and k and every step
. • 2n

functiOn g = Li=1 (XiX!.,

r I CXXA - k - g I dt ~ r I CXXA I dt - (28 - 1) rig I dt.
a ~ a

Proof It follows that .\(A n [a, bJ) = (b - a)/2. Now,

rI CXXA - k - g [ dt
a

b - a n
=~ l= {8 1 (X - k - CX2i-l I + (l - 8) 1k + CX2i-1 I

j=1

+ (1 - 8) I cx - k - CX2i I + 8 I k + CX2i I}

b - a n
~~~ {I cx I - (28 - 1)(1 CX2H I + 1CX2i In

j=1 .

b - a b - a 2n
= -- I ex I - (28 - 1)-- 1: 1CXi I

2 2n i=1

= r 1CXXA I dt - (28 - 1) rig I dt.
a a

ProofofTheorem 2. We will show that the set S defined in (3.1) satisfies:

(a) a(S) = 1.

(b) For every compact set Kin L 1(0, 1) there is an x in S such that
d(x, K) > 1.

Since S C (3Cn) + (1 + lin) B for every n, a(S) ~ 1 + lin for every n.
Hence a(S) ~ 1. Since (b) implies a(S) ~ 1, it is sufficient to prove (b).



NON-PROXIMINALlTY IN OPERATOR SPACES 173

Let Kbe a compact subset of L I (O, 1). For some f3 > 0, KC [3B. The pro­
jections Pn converge uniformly to I on compact sets. Thus, for a suitable
integer p > 1, lif - Ppfll ~ t for every fEK. Let K1 be the compact set
K1 = (1 -- P 1,) K. Now define IX =-= o{p) > 2 and E = E( p) > 0 by

(3.2)

(3.3)

(IX > 2 yields E > 0 easily). There exists an integer q, q > p, so that
(I - Pq) K1 C EB. Thus,

Let () be defined by

f) == 1 - 1/3:.

Note that t < f) < 1.
Now construct a set A as follows. First define

(3.4)

(3.5)

ai = f)

=1-f)

if 0 ~ i(mod 2Q
- P) < 2q- P-\

if 2q- p - 1 ~ i(mod 2Q-
p

) < 2q -
p

(i(mod n) = j if 0 ~ j < nand n divides i - j). Then

2"

A = U [(i - 1) 2-q
, (i - 1) 2-q + a;2-Q].

i~l

(3.6)

A has the following two properties:

(i) .\(A (\ Ll~P» = t.\(Ll~p» = 2--1'-1 (j = 1,2,3,... ,2))).

(ii) For every j = 1,2,3,... ,21' and every n = p + 1,p + 2, p + 3,... , q,
A(A (\ Ll}n» = f)'\(Llln» = f)2-n for exactly 2n- 1'- 1 of the 2n- p indices i
satisfying Llln) C LljP> and il(A (\ Lljn» = (l - B) 2-n for the remaining
2-n-,,-1.

Now put f = iXXA • Since A(A) = t, lif!i = i ex !I\(A) = 1 + l/p. Hence
f E 3C" + (l + l/n) B for n = 1, 2, 3,... , p. g E 3Cv+1 defined by
g = ex L~:l XLl~~:~) satisfies lif - gil = u:(l - 8) = 1. Hence fE 3ClJ+l --"- B
and dearly fE 3Cn + (1 + l/n) B for all n > p (since Cn'::J C,,+:J. From
the above,jE 3Cn + (1 + l/n) B for all n, i.e.,jE S.

It is left to show that d(/, K) > 1. By (3.4), it is sufficient to prove
d(f, (3C p + iCq) > 1 + E. Let h E [3Cp and g E 1Cq • For every
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i = 1,2,3,..., 2p h is constant on LlIV ). Lemma 1 may now be used with
[a, b] = LIP), n = 2Q

-
P-\ {II' 12 , ••• , I2n} a suitable renumbering of the

LlJq),s contained in LIP) and k the value of h on Lllv ). We get

I I CXXA - h - g I dt ?: I I CXXA I dt - (2f) - 1) I Ig [ dt.
L1f~) L1~~) L1~p)

Summing over i = 1, 2, 3,... , 2v gives

1Ilf - h - gil?: [If II - (2f) - 1) [I g II ?: Ilfll - 8 (2f) - 1)

= I - ~ (2 (1 - ~) - 1) = 1 + 2E.

4. PROOF OF THEOREMS 1 AND 3

Denote by {e;} the natural unit vector basis of 11 .

PROPOSITION 1. Let E be a Banach space and let T E L(li , E) then

1. [I T[I = Sup; II Te; II,

2. I[ TI[e = a({Te; : i = 1,2, 3,...}).

Proof 1. It is an easy well-known fact. 2. Let K E C(li , E) then

d(Te;, {Ke;}i:~I) ~ [[ T - K[I for all i. Thus a({Te;};'=I) ~ II Tile. Let C
be a compact set in E. For every j pick y; E C such that [I Te; - y; [I ~
sup; d(Tei , C). The compact operator K E CUI' E) defined by Ke; = y;
satisfies II T - K II ~ SUPi d(Tei , C). We get that [I T lie ~ SUPi d(Tei , C)
for every compact set C in E. Hence [[ Tile ~ a({Te;}~I)'

PROPOSITION 2. The following are equivalent for a Banach space E.

(a) CUI' E) is proximinal in L(lI, E).

(b) For every bounded countable set S in E the infimum (1.1) is attained.

Proof (a) ~ (b): Suppose (a) holds and let S = {Xi: i = 1,2, 3,...}
be a bounded countable set in E. Define T E L(li , E) by Tei = Xi' Let
K E CUI' E) be a closest compact operator to T (i.e., II Tile = II T - K II)
and put C = {Kei : i = 1, 2,...}. By Proposition 1, a(8) = II Tile =
[I T - K[[ ?: sup d(Xi' C).

(b) ~ (a): Let T be an element of LUI, E). Assume (b) holds then there
is a compact set C such that [I Tile = a({Te;}~I) = SUPi d(Te;, C). Now
if we define K as in Proposition 1, II T - KII ~ SUPi d(Tei' C) = II Tile.
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The following fact is well known and easy to prove.
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PROPOSITION 3. Let E and F be Banach spaces. The map 0': L(E, F*) -+

L(F, E"') defined by O'(r) = T*J, where J: F -+ F** is the natural embedding,
is a isometry onto. Furthermore, 0' maps C(E, F*) onto C(F, E*).

Proof Let JI : E -+ E** be the natural embedding. Define f3: L(F, E*) -+

L(E, F*) by f3(S) = S*JI . It is easy to see now that Ci 0 f3 and f3 0 IX are the
identities of L(F, E*) and L(E, F*), respectively. Since ex and f3 are both
contractive, the isometry claim is proved. IX is surjective since it has a right
side inverse. Finally, if T is compact, T*J = O'(T) is compact and if T'<J
is compact, T = (T*J)* JI is also compact.

PROPOSITION 4. LI(O, 1) is isometric to the range ofa contractive projection
in (1",,)*.

Proof L",(O, 1) is isometric to the range of a contractive projection in
I", (see [10]). Hence, there is a contractive projection in (1",,)* whose range is
isometric to (L",(O, 1»*. But it is known that there is a contractive projection
in (L",(O, 1»* with range isometric to LI(O, 1) (see [2, p. 163]).

PROPOSITION 5. Let E and F be Banach spaces and let G be the range of
a contractive projection in F. Then if C(E, F) is promininal in L(E, F), C(E, G)
is proximinal in L(E, G).

Proof Trivial.

Proof of Theorem 1. By Theorem 2 there is a set S in LlO, 1) for which
the infimum (Ll) is not attained. Let So be a countable dense subset of S.
Clearly a(So) :s;; a(S) = 1. For every compact set C in L 1(0, 1) there is
XES with d(x, C) > 1. Since So is dense in S, there exists y E So
with d( y, C) > 1. Hence a(So) = 1 and the infimum (Ll) is not attained
for So as well. By Proposition 2, C(1I' LI(O, 1» is not proximinal in
L(lI' LI(O, 1). By Propositions 4 and 5, this fact implies that C(II' «(,,)*)
is not proximina1 in L(ll ,(1",,)*). By Proposition 3 it is the same thing as
Theorem 1 claims.

PROPOSITION 6. For every set F, C(11 , lI(T) is proximinal in L(ll , ll(F).

Proof Let T E L(l1 ,II(F». The range of T is contained in a subspace
G of II(F) isometric to 11 (unless F is finite) such that there is a contractive
projection of lI(F) onto G. But C(lI' h) is proximinal in L(lI' 11) (e.g., [9])
and this yields the result easily.

Proof of Theorem 3. The "if" part is Proposition 6 since then Li,jL) =
II(F) for some r. For the "only if" part: by the proof of Theorem 1,
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C(lI, LI(O, 1» is not proximinal in L(lI, LiO, 1). By Proposition 5,
C(ll , LI(fL» is not proximinal in L(ll , LI(fL» whenever LI(O, 1) is isometric
to the range of a contractive projection in LifL). But when fL is non-purely
atomic, this is the case (see [8, Sect. 14]).

ApPENDIX

Y. Benyamini has obtained an interesting consequence of the results of
this paper. We reproduce it here. First we need

LEIYIMA. Let X be a separable subspace of IOJ • Then there is a subspace
E of100 , XC E C 100 so that E is isometric to a range ofa contractive projection
in ceO, 1).

Proof We assume the scalar field is complex; for the real case an obvious
modification yields the same. Denote by E the (separable commutative)
algebra with involution generated in 100 by X and the unit (1, 1, ...). By the
Gelfand-Naimark theorem (see [12]), E is isometric to some ceS) with S
a compact metric space (E is separable-thus S is metric). By Milutin's
lemma (see [12]), ceS) is isometric to the range of a contractive projection
in ceO, 1).

THEOREM (Benyamini). C(ceo, 1), ceO, 1» is not proximinal in
L(ceO, 1), ceO, 1».

Proof LI(O, 1) is isometric to the range of a contractive projection in
ceO, 1)* (see [8]). Hence, as in the proof of Theorem 1, C(lI, ceO, 1)*) is not
proximinal in L(lI' ceO, 1)*). By Proposition 3, ceceO, 1),/00) is not proxi­
minal in L(ceO, 1), 100 ).

Let T: C(O, 1) ---+ 100 be an operator which has no closest compact operator.
There is a sequence K n : C(O, I) ---+ 100 of compact operators such that
II T - Kn II ---+ II Tile. Denote by X the (separable!) subspace of 100 generated
by the images of T and all the Kn's. Define E as in the lemma. Since

d(T, C(ceo, 1),/00» = d(T, ceceO, 1), E»

there is no closest compact operator to Tin ceceO, 1), E). By Proposition 5,
ceceO, 1), ceO, 1)) is not proximinal in L(ceO, 1), ceO, I».

Remark. This is the first known example of a separable classical Banach
space E for which C(E, E) is not proximinal in L(E, E).

A. Lima has kindly pointed out to us that since 11 is isometric to the range
of a contractive projection in LI(O, I), then Theorem 3 implies that
ceLI(O, 1), LI(O, 1» is not proximinal in L(LI(O, 1), LI(O, 1».
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Finally, let us note that since I", is isometric to the range of a contractive
projection on £",(0, 1), it follows from Theorem 1 that there is an operator
T: £",(0, 1) -+ L",(O, 1) with no best compact approximation K: LAO, 1) --+

L",(O, 1).
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